bit.bio, the company coding human cells for novel cures and a pioneer in the field of synthetic biology, today announces the launch of ioAstrocytes. This new addition to bit.bio’s ioCells portfolio creates an unparalleled toolkit for disease research that addresses the challenges of data reproducibility and enables accelerated therapeutic development.

ioCells, iPSC-derived cells for research and drug discovery, are manufactured using bit.bio’s deterministic programming technology, opti-ox, and are considered best in class for their functionality, consistency, and scalability. With 18 launches to date in 2024, bit.bio’s ioCells portfolio comprises 37 products, including ioWild Type Cells, ioDisease Model Cells and ioCRISPR-Ready Cells.

Astrocytes are a type of glial cell in the brain involved in a wide range of processes, including neural signalling, homeostasis maintenance, and immune response regulation. The significance of astrocytes for effectively modelling the human brain is frequently underestimated. Growing evidence highlights the important role of astrocytes in CNS conditions, such as multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, epilepsy, pain disorders, and neuropsychiatric conditions. With the introduction of ioAstrocytes, scientists now have access to defined, consistent, and functional human astrocytes optimised for co-culture with other CNS cell types.

“We are excited to expand the universe of ioCells with ioAstrocytes and offer researchers worldwide access to the major cell types of the human brain,” said Mark Kotter, Founder and CEO of bit.bio. “Much like building blocks, scientists can combine different CNS cell types with or without disease-specific mutations to explore their interactions. We look forward to seeing how the neuroscience community will leverage this powerful toolkit to further our understanding of the CNS and develop much needed therapies for neurological conditions.”

ioAstrocytes are highly defined, consistent, and functional human astrocytes, optimised for co-culture with other CNS cell types. They display stellate morphology, express key markers, and perform essential astrocyte functions such as phagocytosis, secretion of cytokines, and modulation of neuronal activity when co-cultured with CNS cells.

“ioAstrocytes represent a significant addition to bit.bio’s growing ioCells portfolio, enabling researchers to enhance in-vitro CNS models and accelerate discoveries,” said Farah Patell-Socha, Vice President of Research Products at bit.bio. “By providing highly consistent cells with essential functional properties of human astrocytes, we’re unlocking novel ways for advancing neuroinflammation research, conducting in-depth neural network studies, and performing screening and toxicity assessments for potential therapeutics.”